

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Vibrational and SERS Spectra of Spermine Phosphate Hexahydrate

Antony Eapen^a; I. Hubert Joe^a; G. Aruldas^b

^a Dept. of Physics, Mar Ivanios College, Trivandrum ^b Regional Research Laboratory, (CSIR), Pappanamcode, Trivandrum

To cite this Article Eapen, Antony , Joe, I. Hubert and Aruldas, G.(1997) 'Vibrational and SERS Spectra of Spermine Phosphate Hexahydrate', *Spectroscopy Letters*, 30: 4, 751 – 770

To link to this Article: DOI: 10.1080/00387019708006696

URL: <http://dx.doi.org/10.1080/00387019708006696>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**VIBRATIONAL AND SERS SPECTRA
OF
SPERMINE PHOSPHATE HEXAHYDRATE**

Antony Eapen, I. Hubert Joe

Dept. of Physics, Mar Ivanios College, Trivandrum - 695 015

and

G. Aruldas*

Regional Research Laboratory (CSIR), Pappanamcode, Trivandrum 695 019

ABSTRACT

FTIR, Raman and SERS spectra of spermine phosphate hexahydrate have been recorded and analysed. Vibrational spectra show the protonation of amino and imino groups indicated by the presence of HPO_4^{2-} ion. The molecule is found to be adsorbed to the metal surface through nitrogen and oxygen atoms of the molecules. Distortion of the HPO_4^{2-} ion, change of symmetry of the molecule due to chemisorption and the enhancement in intensity of the amino group vibrations are discussed.

*Author to whom correspondence should be addressed.

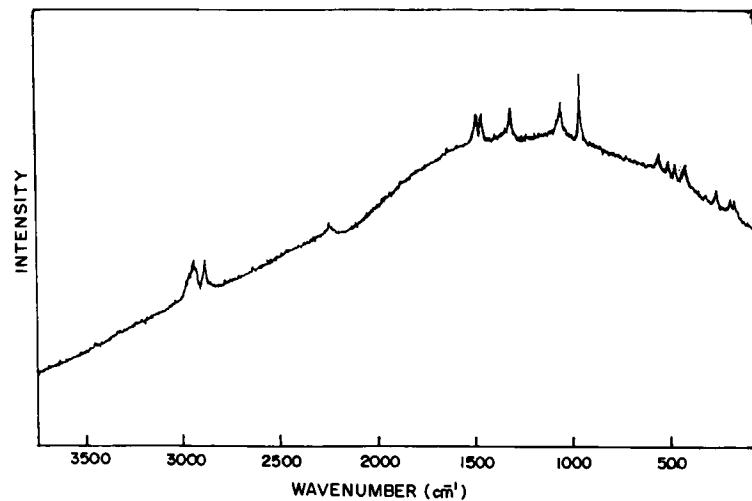
INTRODUCTION

Polyamines are aliphatic, nitrogenous, non protein bases having low molecular weight. They are present in cells in large quantities possessing the capability of substituting for cations such as K^+ or Mg^{++} that may be in short supply [1]. It has been reported that the urine of patients with solid tumours and lukaemia contains relativley higher amount of polyamines than that of healthy persons [2]. Study of polyamines are important as they stabilise DNA, bridging the two poly nucleotide strands of double helix via hydrogen bonds with the phosphate group across the grooves [2 - 5]. Spermine is a polyamine widely distributed in animal and micro organism related biological materials. Its concentration is found to be very high in pancreas, prostrate of mammals and human seman [6]. Studies on the effect of spermine on various enzyme activites and on the relationship to nucleic acids have revealed many interesting physiological and pharmacological phenomena which are still not well understood at the molecular level.

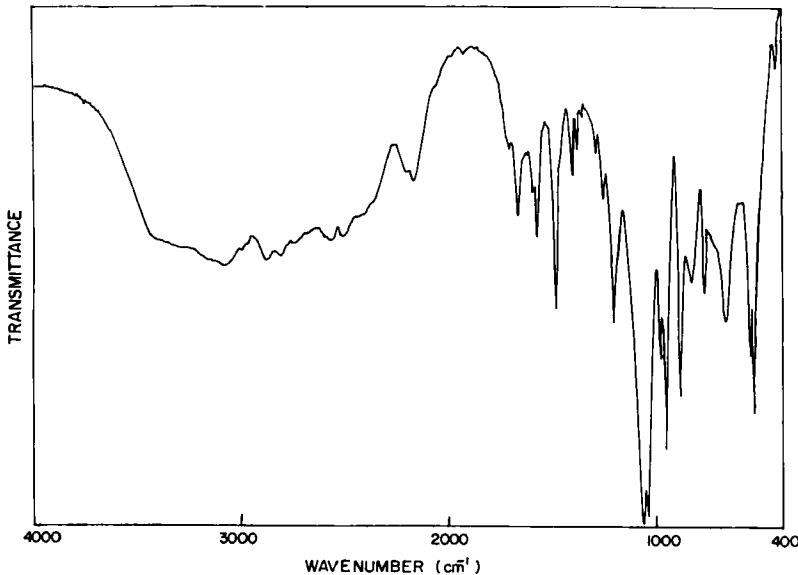
Spermine ($C_{10}H_{26}N_4$) being a strong base highly soluble in water, addition of phosphoric acid (H_3PO_4) to its aqueous solution results in the precipitation of the salt spermine phosphate hexahydrate ($C_{10}H_{26}N_4 \cdot 2H_3PO_4 \cdot 6H_2O$), hereinafter referred to as SP, immediately. In this paper the vibrational and SERS investigations of spermine phosphate hexahydrate is carried out to obtain information on the binding mechanism, geometry, conformation and orientation of the adsorbed molecule, which will be important in understanding the biological phenomena of the compound.

EXPERIMENTAL

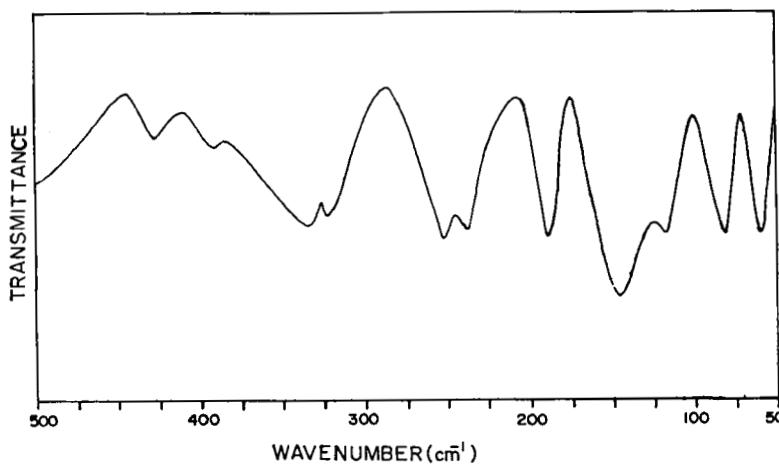
Commercially available (Aldrich Co. Ltd 99.99% pure) spermine phosphate hexahydrate was used for the investigation. Silver colloid was prepared from sodium borohydride and silver nitrate.


Raman spectra (Fig. 1) were recorded on a Dilor Z 24 spectrometer with 300 mW laser power of a Spectra Physics model 165 argon ion laser (514.5nm). The FT-IR spectra (Figs. 2 and 3) were obtained using Nicolet - 510P (4000-400cm⁻¹) and Bruker IFS 66V (500 - 50 cm⁻¹) spectrometers.

SERS spectra (Figs. 4, 5, and 6) were recorded for concentrations 10⁻⁴ , 10⁻⁵ and 10⁻⁶ M in the stable colloid prepared by the method described by Creighton et al. [7]. To record the SERS spectra drops of 10⁻⁴ / 10⁻⁵ / 10⁻⁶ M spermine phosphate hexahydrate solution was added to 2 ml. of the silver colloid.


FACTOR GROUP ANALYSIS

SP belongs to the monoclinic system with $a = 7.955$, $b = 23.216$ and $c = 6.870$ Å. The space group is $P2_1/a$ (C_{2h}^5) and there are two units in the crystallographic unit cell [6].


Its structure consists of parallel sheets of spermine molecules separated by phosphate ions and water molecules which form a sheet of composition $HPO_4^{2-} \cdot 3H_2O$ by O - H ..O hydrogen bonds. The outstanding structural feature

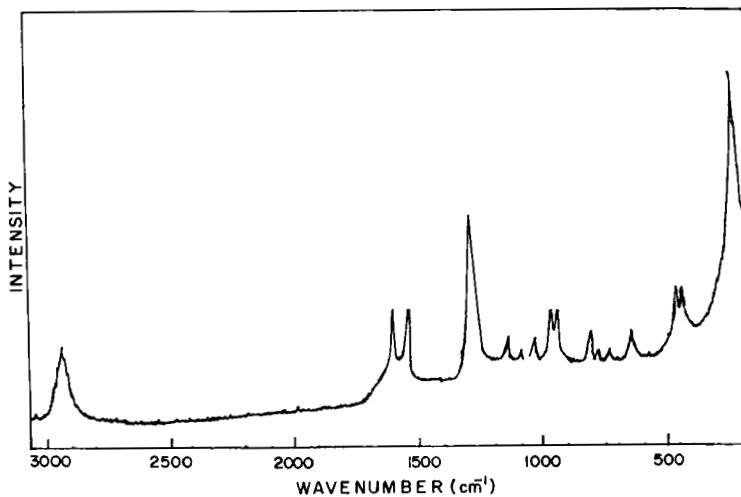

Fig. 1 Raman Spectrum of Spermamine Phosphate Hexahydrate (Polycrystalline form)

Fig. 2 FTIR Spectrum of Spermamine Phosphate Hexahydrate in the region $400\text{-}4000\text{cm}^{-1}$

Fig. 3 FTIR Spectrum of Spermine Phosphate Hexahydrate in the region 50-500cm⁻¹

Fig. 4 SERS Spectrum of 10⁻⁴M Spermine Phosphate Hexahydrate in silver sol

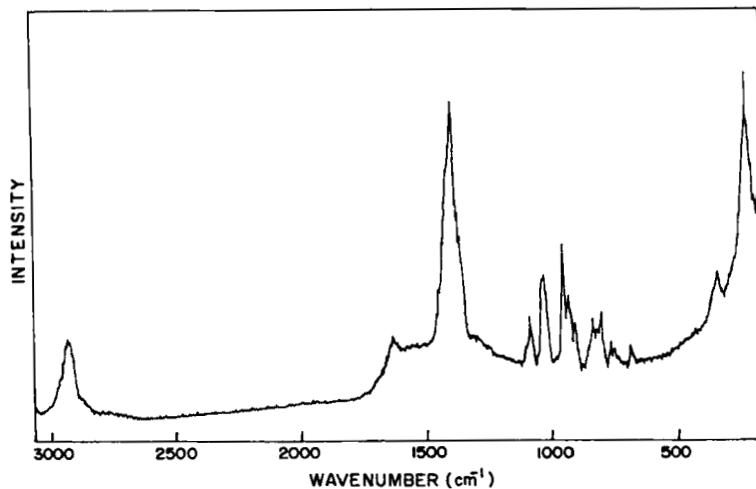


Fig. 5 SERS Spectrum of 10^{-5} M Spermamine Phosphate Hexahydrate in silver sol

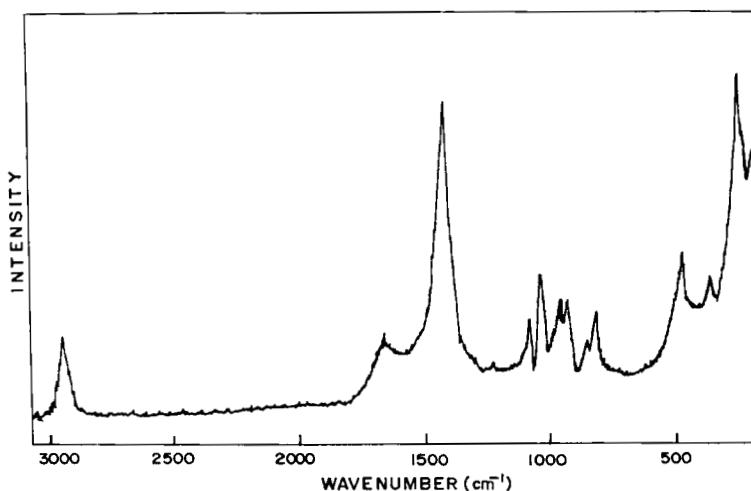


Fig. 6 SERS Spectrum of 10^{-6} M Spermamine Phosphate Hexahydrate in silver sol

is the presence of two kinds of sheets. These two kinds are stacked alternately parallel to the (001) plane, being held together by N - H \cdots O hydrogen bonds.

The standard group theoretical analysis [8] gives the distribution of irreducible representations at $k = 0$ (excluding 3 acoustic modes) as follows (Table 1)

$$\boxed{SP = 111A_g + 111B_g + 110A_u + 109B_u}$$

where the 'g' modes are Raman active, and 'u' modes are IR active. The symmetry of the phosphate ions is lowered from T_d to C_1 in SP. The correlation schemes for its internal modes are shown in tables 2 to 7. Corresponding frequencies are also given in brackets.

INTERNAL VIBRATIONS OF SPERMINE MOLECULE

The spermine molecule occupies a general position in the crystal lattice and hence all the 237 fundamental vibrations are Raman and IR active. However, as the unit cell contains large number of CH_2 groups, the phonon energies will be closely spaced and all the predicted modes cannot be identified. The crystal structure determination [6] reveals the possibility for the protonation of amino and imino nitrogens at the expense of the phosphate group. In that case NH_3^+ and NH_2^+ vibrations are the ones expected in the spectrum. Identification and interpretation of the vibrational frequencies can reveal information regarding the presence of NH_3^+ , NH_2^+ and deprotonation of phosphate group.

The stretching modes of CH_2 group usually occur in the region 2800 - 3100 cm^{-1} . In the present case it is observed at 2505, 2558, 2873 and 3072 cm^{-1} .

Table 1
Factor group analysis of Spermine phosphate hexahydrate (Space group $P\bar{2}_1/a \implies C_{2h}^5$; $Z^B = 2$).

Factor group species is C_{2h}	NH ₃ ⁺ (C ₁ site)		CH ₂ (C ₁ site)		NH ₂ (C ₁ site)		HPO ₄ (C ₁ site)		H ₂ O (C ₁ site)		Optical modes		Acoustic modes		Activity	
	Internal modes	External modes	Internal Modes	External modes	Internal modes	External modes	Internal modes	External modes	Internal modes	External modes	Raman	IR				
A _t	6	3T, 3R	15	15T, 15R	3	3T, 3R	12	3T, 3R	9	9T, 9R	111		4		f	
B _t	6	3T, 3R	15	15T, 15R	3	3T, 3R	12	3T, 3R	9	9T, 9R	111		*		f	
A _u	6	3T, 3R	15	15T, 15R	3	3T, 3R	12	3T, 3R	9	9T, 9R	111	-1	f		*	
B _u	6	3T, 3R	15	15T, 15R	3	3T, 3R	12	3T, 3R	9	9T, 9R	111	-2	f		*	
	24	12T, 12R	60	60T, 60R	12	12T, 12R	48	12T, 12R	36	36T, 36R	444					

T - Translations; R - librations; a - active; f - forbidden

Table 2
Correlation of the internal vibrational modes for PO_4 units in SP.

PO ₄ Free ion symmetry (T _d)	HPO ₄ ion symmetry C _{3v}	Site symmetry C ₁	Factor group C _{2h}
A ₁ (ν_1) 936 P - O stretch	A 988 P - O stretch	A (ν_1)	A _g + B _g (R) A _u + B _u (IR)
E (ν_2) 420 OPO bend	E 394 OPO bend	A (ν_2') A (ν_2'')	A _g + B _g (R) A _u + B _u (IR)
F ₂ (ν_3) 1004 P-O stretch	A 862 (P-O stretch)	A (ν_3')	A _g + B _g (R) A _u + B _u (IR)
	E 1076 (P - O stretch)	A (ν_3') A (ν_3'')	A _g + B _g (R) A _u + B _u (IR)
F ₂ (ν_4) 573 O-P-O bend	A 537 (OPO bending)	A (ν_4')	A _g + B _g (R) A _u + B _u (IR)
	E 537 (O-P-O bending)	A (ν_4') A (ν_4'')	A _g + B _g (R) A _u + B _u (IR)

Table 3

Correlation scheme for the internal vibrations of HPO_4 ion in SP.

f^γ	HPO ₄ ion symmetry C_{2v}	Site symmetry C_1	Factor group symmetry C_{2h}
<hr/>			
PO₄ modes			
4	A_1		
8	E		
4	A_1		
8	E		
4	A_1	A	$9A_1(R)$
8	E		$9B_1(R)$
			$9A_2(IR)$
			$9B_2(IR)$
<hr/>			
H modes			
4	A_2		
8	E	A	$3A_1(R)$
			$3B_1(R)$
			$3A_2(IR)$
			$3B_2(IR)$

Table 4

Correlation scheme for the internal vibrations of
 NH_3^+ group Spermine molecule in SP.

f^γ	Free ion symmetry C_{3v}	Site symmetry C_1	Factor group symmetry C_{2h}
8	A_1	A	$6A_g$ $6B_g$ $6A_u$ $6B_u$
16	E		

Table 5

Correlation scheme for the internal vibrations of
 NH_2^+ group in SP.

f^γ	Free ion symmetry C_{2v}	Site symmetry C_1	Factor group symmetry C_{2h}
4	A_1	A	$3A_g$ $3B_g$ $3A_u$ $3B_u$
4	A_1		
4	B_1		

Table 6

Correlation scheme for the internal vibrations of
CH₂ group in SP.

f^γ	Free ion symmetry C_{2v}	Site symmetry C_1	Factor group symmetry C_{2h}
20	A_1		
20	A_1	A	$15A_g$ $15B_g$ $15A_u$ $15B_u$
20	B_1		

The lowering of these frequencies to 2500 cm⁻¹ must be due to the bonding of the CH₂ group to a nitrogen atom [2]. The wagging, twisting and rocking modes of CH₂ are also identified. The complete assignments are given in Table 8.

VIBRATIONS OF HPO₄²⁻

The protonation of the amino and imino nitrogens at the expense of H₃PO₄ results in HPO₄²⁻ ion. The phosphate tetrahedra is distorted slightly with P - O distances 1.517, 1.518, 1.529, and 1.589 Å. The acid hydrogen atom is bonded to the oxygen atom of the longest P - O bond [6]. The vibrational assignment can be done on the basis of characteristic vibrations of HPO₄ with C_{3v} symmetry. In Sp the HPO₄²⁻ ions occupy sites of C₁ of lower symmetry than

Table 7

Correlation scheme for the H_2O vibration
(internal and librations) in SP.

f^γ	Free ion symmetry C_{2v}	Site symmetry C_1	Factor group symmetry C_{2h}
Internal modes			
12	A_1		
12	A_1	A	$9A_g$
12	B_1		$9B_g$
			$9A_u$
			$9B_u$
Librational modes			
12	A_2		
12	B_1	A	$9A_g$
12	B_2		$9B_g$
			$9A_u$
			$9B_u$

the free ion symmetry. This may lead to activation of inactive modes along with splitting and / or shifting of internal modes. Though the free ion approach leads to only 3 bands each for stretching ($2A_1 + E$) and bending ($A_1 + 2E$) modes of the PO_4 group in both IR and Raman spectra, the site symmetry approach predicts four and five bands respectively for these modes. The appearance of four stretching bands and nine bending bands for HPO_4^{2-} which

Table 8
Vibrational Spectral data (cm⁻¹) and band assignments of SP.

Powder	IR	Assignments
66	57 m 80 m 119 m	T PO ₄ .
158	145 s, br	R PO ₄
189	188 m	t CH ₃
257	240 m 251 m 323 m 336 m 392 vw	240 m 251 m 323 m 336 m 392 vw
427	430 vw	δ _s O-P-O
476		δ _{as} PO ₃ , δ _{as} O-P-O , t NH ₃ ⁺
512	535 s	δ _{as} PO ₃
563	556 s 670 m, br 774 m 835 m	556 s 670 m, br 774 m 835 m
953	888 s 957 vs 985 m	888 s 957 vs 985 m
1050	1047 vs 1068 vs, br 1202 m 1252 w	1047 vs 1068 vs, br 1202 m 1252 w
1311	1293 w 1342 vvw 1361 vvw 1404 w	1293 w 1342 vvw 1361 vvw 1404 w
1464	1462 sh	δ _{as} CH ₂
1491	1481 s 1574 m 1592 sh 1664 m	1481 s 1574 m 1592 sh 1664 m
2248	1706 w 1863 vvw 1917 vvw 1979 vvw 2049 vvw 2164 m 2505 s 2558 s	1706 w 1863 vvw 1917 vvw 1979 vvw 2049 vvw 2164 m 2505 s 2558 s
2878	2873 s	2873 s
2937	3072 s, br	3072 s, br
3150	3140 s, br 3300 s, br 3450 s, br	3140 s, br 3300 s, br 3450 s, br
		υ _{as} CH ₂ , υ _s NH ₃ ⁺
		υ _{as} NH ₃ ⁺
		υ ₁ , υ ₃ H ₃ O

is more than those predicted by factor group analysis, indicates that the effect of site symmetry in the crystal is considerable. The internal vibrations of HPO_4^{2-} group can be considered as arising from those of PO_3 and P - O (H) vibrations.

In the IR spectrum, the PO_3 asymmetric stretching mode appears as the most intense band at 1068 cm^{-1} as expected. The PO_3 symmetric stretching mode (A_1) though IR inactive is observed as a medium intense band at 985 cm^{-1} . This is a consequence of site symmetry effect which confirms the lowering of the symmetry of HPO_4^{2-} ion.

The IR and Raman frequencies corresponding to ν_6 (E) P - O - H bending, ν_2 (A_1) P - O (H) stretching, ν_1 (A_1) PO_3 symmetric stretching and ν_4 (E) PO_3 asymmetric stretching modes appear slightly shifted from the corresponding frequencies in the spectra of HPO_4^{2-} aqueous solution [9]. This indicates that the HPO_4^{2-} tetrahedra is slightly distorted in the crystal. Thus various frequencies observed for the phosphate group are close to the ones observed for HPO_4^{2-} ion which also substantiate the deprotonation of phosphate group.

The normal Raman spectrum has bands of relatively weak intensity probably due to excessive fluorescence. Even the ν_s PO_3 which is expected to be very intense could not be observed.

SERS SPECTRA

In the metal adsorbate stretching mode region two bands have been observed. The one around 225 cm^{-1} is strong in all the concentrations whereas the one around 170 cm^{-1} is medium intense and found only in two concentrations (Table 9). These are assigned to $\nu\text{ Ag} \cdots \text{N}$ and $\nu\text{ Ag} \cdots \text{O}$ respectively. This observation clearly shows that the molecule is adsorbed to the metal surface through different sites - through the amino and imino nitrogens and through the oxygen of the phosphate group.

In the SERS spectrum the band observed around 1400 cm^{-1} corresponding to NH_2^+ rocking is the most intense in all the three concentrations. In the 10^{-5} M concentration it appeared as a triplet (1360 , 1395 and 1410 cm^{-1}). The splitting of this NH_2^+ rocking mode can be attributed to the change of symmetry of the molecule on chemisorption and the consequent breakdown of selection rules. The twisting and scissoring modes of NH_2^+ and bending modes of NH_3^+ have also shown intensity enhancement. Stretching vibrations of NH_3^+ and asymmetric stretching vibrations of NH_2^+ are also found to be enhanced. Thus it is evident that the NH_2^+ and NH_3^+ vibrations are generally affected by adsorption of the molecule to the silver surface. It is reasonable to infer that the mechanism behind the interaction between the amino group and silver surface is the co-ordination through nitrogen lone pair electrons.

The molecule adsorbed with its plane perpendicular to the metal surface shows greater enhancement of the in plane vibrational modes [10]. According

Table 9
SERS Spectral data (cm⁻¹) and band assignments.

10 ⁻⁶ M	10 ⁻⁵ M	10 ⁻⁴ M	Assignment
171 m	167 m		ν Ag...O
229 s	225 s	227 s	ν Ag...N
342 w	339 m	451 m, br	δ PO ₃ , t NH ₃ ⁺
458 m, br		479 m	
	685 w	659 w	δ as PO ₃
	747 w	766 vw	
804 m	801 m	807 vw	NH ₂ ⁺ twist
836 w	821 m	834 w	
	836 m		
	900 m	931 m	ν C - C
923 m	928 w		
959 m	952 m	957 m	ν_s PO ₃
	986 vw		
1026 m	1027 m	1040 w	ν C - N
1074 w	1083 w	1091 vw	ν_{as} PO ₃
1225 vw	1300 vw	1168 w	
	1360 sh		
1407 vs	1395 vs	1395 s	NH ₂ ⁺ rock
	1410 sh		
	1487		δ_s NH ₃ ⁺
		1583	NH ₂ ⁺ scissoring
1646 w, br	1638 m, br	1622 m	δ_{as} NH ₃ ⁺
	2200 m, br		
2929 m	2900 m	2930 m	
2995 vw	2925 m	3060 vvw	ν NH ₂ ⁺ , ν_s NH ₃ ⁺
	2980 w		
3238 m, br	3247 m, br	3259 m, br	ν_{as} NH ₃ ⁺
	3389		

to the surface selection rule [11], a molecule adsorbed on the surface of small isolated metal spheres with its z axis perpendicular to the metal surface and in the plane of the molecule, the vibrations with larger polarizability component along the z axis are expected to be more enhanced.

In SP, as the out of plane bending NH_2^+ vibrations ($804, 1395 \text{ cm}^{-1}$) are found to be more enhanced than the in plane bending vibrations ($1487, 1638 \text{ cm}^{-1}$), the molecule is expected to be adsorbed on the metal surface through nitrogen with its plane perpendicular to the metal surface.

The $\nu_s \text{ PO}_3$ which is not observed in the normal Raman spectrum has appeared in all the three concentrations. In the spectra of 10^{-5} M concentration this mode is split into two which indicates lowering of symmetry due to adsorption. Bending modes of PO_3 also showed enhancement in the SERS spectra. Asymmetric PO_3 stretching mode is also found to be enhanced slightly. Thus enhancement has also taken place via the oxygen atoms of HPO_4^{2-} groups.

RESULTS

1. Vibrational spectral analysis shows the presence of HPO_4^{2-} ion indicating protonation of amino and imino groups. Slight distortion of the HPO_4^{2-} ion is confirmed.
2. The identification of two bands in the metal adsorbate stretching region is indicative of adsorption of the molecule to the metal surface through the two sites nitrogen and oxygen atoms of the molecule.

3. The splitting of the amino group vibrations in the SERS spectra suggests change of symmetry of the molecule due to chemisorption and the consequent breakdown of selection rules.
4. From the relative enhancement of amino group vibrations, it may be inferred that the molecule is adsorbed perpendicular to the metal surface.

ACKNOWLEDGEMENT

One of the authors (G. Aruldas) acknowledges the financial support received from CSIR, New Delhi in the form of an emeritus scientist scheme.

REFERENCES

1. G. Scalabrino, M.E. Ferioli and G. Luccarelli, *Prog. Neu. Biol.*, **25**, 289 (1986).
2. S.S. Cohen, *Introduction to Polyamines*, Prentice - Hall, Eaglewood Cliffs (1971).
3. L. Stevens, *Biochem. J.* **103**, 811 (1967).
4. A.M. Liquori, V. Constantino, V. Creseenzi, V. Elia, E. Giglio, R. Puliti, M. De Santis Savino and V. Vitagiano, *J. of Mol. Biol.* **24**, 113 (1967).
5. M. Tsuboi, *Bull. Chem. Soc. Jpn.*, **37**, 1514 (1964).
6. Y. Ittaka and Y. Huse, *Acta. Cryst.* **18**, 110 (1965).
7. J.A. Creighton, C.G. Blatchford and M.G. Albrecht, *J. Chem. Soc. Faraday Trans.* **275**, 790 (1979).
8. W.G. Fateley, F.R. Dollish, N.T. Mcdevitt and F.F. Bentley, *Infrared and*

Raman Selection Rules for Molecular and Lattice Vibrations - The Correlation Method, Wiley Insterscience, New York (1972).

9. W. Yellin and W.A. Cilley, *Spectrochim. Acta*, **25A**, 879 (1969).
10. U.K. Sarkar, S. Chakrabarti and T.N. Misra, *J. Raman Spectrosc.* **24**, 97 (1993).
11. J.A. Creighton, in *Spectroscopy of Surfaces* edited by R.J.H. Clark and R.E. Hester P48, Wiley, Chichester (1988).

Date Received: November 11, 1996
Date Accepted: January 10, 1997